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Introduction
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 M.C. Escher popularized 
intricately decorated 
isohedral tilings

 Planar tilings can be 
designed by hand, or with 
available tools on the web

 Specialized CAD tools help 
address the challenges of 
tiling other 2-manifolds

 What are interesting tilings
of 3-space?



Tiling on 2-manifolds
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In the plane

In the 
Poincaré disk

On the sphere

On a genus-3
“Tetrus” surface



2½D  Tilings
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 Warm-up exercise before tackling full 3D

 Extruded 2D tilings form layers in 3-space

 Trivial case: extrude vertically, edit height field

 Fancier case: choose an “offset” between adjacent layers



Triangulation Library
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 Need meshes for boundary representation of tiles

 Why implement another triangulation library?

 Chose Java for ease of UI development and portability

 Could not find existing libraries native to Java

 Using Triangle would require JNI or dumping/reading ASCII

 Precise results are unnecessary

 Limited by precision of Fused Deposition Machine

 Don’t need optimizations for large meshes, but do need 
support for frequent modifications

 Opportunity to learn about data structures and algorithms 
for triangulation



Delaunay Triangulation
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 The circumcircle through any 
triangle does not contain any other 
vertices of the triangulation

 “Locally equiangular”: maximizes 
the minimum of the six angles 
within any two adjacent triangles

 Can use an in-circle test to determine 
if a triangulation is Delaunay

 Can make a triangulation Delaunay 
by flipping edges



Robustness
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 Need reliable tests for determining if a vertex is:
 Left/right of a line (orient)
 Inside/outside the circumcircle of a face (in-circle)

 Exact arithmetic or adaptive precision arithmetic
 Slow (exact) or complicated implementation 

(adaptive precision)
 Precision is not crucial for our application

 Snap to integer coordinates, use integer 
arithmetic
 Rotating/skewing/scaling the tile and computing 

intersections is awkward
 Modern processors are designed for flops

 Merge vertices that lie within an epsilon radius
 Use an epsilon >> floating point round-off error
 Can still have problems with vertices within < 

epsilon of edges
 Robust enough for our purposes (“quasi-robust” in 

Shewchuk’s categorization)



Three Basic Types of Algorithms
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 Divide-and-conquer (e.g., Shamos and Hoey)

 Typically used to generate the Voronoi diagram

 Can be modified to return the Delaunay triangulation, the 
dual of the Voronoi diagram

 Sweepline (e.g., Fortune)

 Moving “front” along an axis guarantees that circumcircles
behind the front can’t contain new vertices

 Incremental insertion (e.g., Lawson)

 Performance is limited by how well you can locate which 
triangle contains the insertion site

 Many optimizations are available



Lawson’s Incremental Insertion Algorithm
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 Nice properties
 Maintains the integrity of the mesh after every vertex insertion

 Easy to implement

 Basic idea
 Locate triangle containing insertion site

 Trisect the triangle; add all involved edges to a queue

 Perform in-circle test on queue
 If an edge fails the test, flip it and add its four neighbor edges back 

onto the queue

 Guaranteed to terminate: can show that circumradii are strictly 
decreasing and there are only finitely many triangulations (Sibson)

 Issues
 Locating insertion sites is the bottle-neck

 How do you insert a site outside of the boundary?



Locating Insertion Sites
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 Easy if you have a convex boundary: walk along the 
triangles

 For non-convex boundaries, we load on-demand copies 
of the neighboring tiles to fill concavities

 Heuristic:
use the last inserted
site as the search
origin, since a designer
will often add vertices
in localized groups



Moving/Removing Interior Vertices
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 Temporary holes arise: need polygon filling algorithm

 We use a naïve O(n2) algorithm for ease of 
implementation

 Recursively cuts off “ear” triangles

 Small polygons, mostly convex: performance isn’t an issue

 If performance were an issue, could use a smarter 
“trapezoidal decomposition” algorithm



Moving/Removing Boundary Vertices
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 Case 1: Move vertex along the boundary

 Assign new vertex coordinates

 Case 2: Move vertex into the exterior

1. Assign new vertex coordinates

2. Remove attached non-boundary edges

3. Fill polygon left by removal

1. 2. 3.



Moving/Removing Boundary Vertices (Cont’d)
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 Case 3: Move vertex into the interior
1. Assign new vertex coordinates

2. Remove …
a) attached non-boundary edges

b) edges that intersect adjacent boundary edges

c) any exterior edges and points

3. Fill polygon left by removal

1. 2. 3.



Mesh-Cutting Algorithm
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 For forming the bottom face of an offset 2½D tile

 Given an underlying mesh and a “cookie-cutter” template

 Truncates the geometry of the underlying mesh to fit inside



Mesh-Cutting Algorithm (Cont’d)
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1. Template offset is specified by user

2. Construct template as an empty 
boundary “shell” with temporary 
edges

 Follow the template to identify 
intersections with the underlying 
mesh

 Load underlying mesh copies on-
demand

 Add fragments that lie inside the 
template to a queue; check future 
intersections against the fragment 
queue

1.

2.



Mesh-Cutting Algorithm (Cont’d)
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3. After finding all intersections, 
add fragments as constraint 
edges to the template shell

4. Perform a flood search to capture 
the remaining geometry inside 
the template

3.

4.



Visual Debugging
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 Sophisticated algorithms are difficult to debug using 
traditional text-based debuggers/methods

 Geometric/graphics algorithms offer the advantage of 
visual debugging options
 Animation and visualization help identify extreme, difficult, 

or unexpected cases

 Can isolate and visualize subtasks within the algorithm

 Implemented in Java2D by overriding the event-queue 
repainting mechanism
 Events can be inserted mid-algorithm to create visual 

“breakpoints”

 Events can specify which geometric features to highlight



3D  Tilings
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 Exploring two fundamental domains:

 #1: Truncated octahedron, derived from the body-centered 
cubic lattice



3D  Tilings
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 Exploring two fundamental domains:

 #2: Rhombic dodecahedron, based on the densest sphere 
packing



Overview of 3D Editing Interface
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 Phase I:
 Individual “panes” of the 3D tile can 

be Delaunay triangulated
 Vertices can be moved in 2D within 

pane interior
 Boundary vertices cannot be moved 

yet, since this would create non-
planar panes

 Phase II:
 All vertices can be moved in 3D:

 Last selected point defines an axis 
through the origin

 Can move points parallel to axis or in 
perpendicular plane

 Local edits available by trisecting 
faces, but no Delaunay guarantee

 Limited “roll-back” to Phase I



User Interface Issues
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 Occlusion is an obstacle to free-form editing of 3D tiles

 Because of symmetry, edits in the current view will also 
change opposite faces

 Creating a convex feature (e.g. a fish fin) creates a 
corresponding  concave feature (e.g. eye socket) on the 
opposite side

 Dual cameras can show convex/concave pairings



User Interface Issues (Cont’d)
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 3D domains can be scaled/skewed and remain space-filling

 What is the easiest way to manipulate this affine transform?

 Created a widget with 9 control points, each restricted to one 
degree of freedom

 Widget maintains same orientation as camera



User Interface Issues (Cont’d)
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 3D tilings can have complicated interlocking features

 Nearest neighbors can be scaled/translated to reveal 
the interface between adjoining tiles

Scaled to 85%
Scaled to 85%
+ translated 0.6
tile lengths away



Conclusion
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 Developed a CAD tool for designing layered 2½D tiles
 Can draw on an existing “vocabulary” of 2D tilings from Escher’s 

sketchbook

 3D cubic lattice tiles are more difficult to design
 The entire editable surface is constrained to fit seamlessly with 

adjacent tiles
 In the 2D case, only the 1D border is subject to symmetry constraints, while 

the interior can be decorated freely

 There is no Escher sketchbook for 3D

 Addressed several UI issues in our prototype 3D tool
 Two-stage editing allows for Delaunay triangulation
 Dual cameras reveal occluded features
 Widget for controlling skew enables high-level editing operations
 Interactive display of nearest neighbors shows how tiles interlock

 Will address future UI issues as we try to create attractive 3D 
tiles!


